首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13749篇
  免费   1185篇
  国内免费   849篇
电工技术   713篇
综合类   1181篇
化学工业   1981篇
金属工艺   2076篇
机械仪表   288篇
建筑科学   1371篇
矿业工程   732篇
能源动力   274篇
轻工业   312篇
水利工程   595篇
石油天然气   419篇
武器工业   61篇
无线电   583篇
一般工业技术   1268篇
冶金工业   3472篇
原子能技术   138篇
自动化技术   319篇
  2024年   23篇
  2023年   339篇
  2022年   474篇
  2021年   533篇
  2020年   524篇
  2019年   417篇
  2018年   442篇
  2017年   315篇
  2016年   360篇
  2015年   354篇
  2014年   565篇
  2013年   581篇
  2012年   754篇
  2011年   860篇
  2010年   676篇
  2009年   701篇
  2008年   657篇
  2007年   784篇
  2006年   808篇
  2005年   727篇
  2004年   615篇
  2003年   640篇
  2002年   512篇
  2001年   503篇
  2000年   423篇
  1999年   467篇
  1998年   340篇
  1997年   281篇
  1996年   232篇
  1995年   202篇
  1994年   164篇
  1993年   133篇
  1992年   109篇
  1991年   77篇
  1990年   59篇
  1989年   36篇
  1988年   19篇
  1987年   24篇
  1986年   15篇
  1985年   7篇
  1984年   5篇
  1983年   4篇
  1982年   5篇
  1981年   3篇
  1980年   5篇
  1979年   5篇
  1975年   1篇
  1959年   1篇
  1957年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
研究了相变温度附近等温热处理温度和保温时间对含长周期结构Mg97Zn1Y2合金的组织的影响,并对演变机理进行了探讨。主要研究结论如下:500℃固溶处理时,随着时间的增加,长周期结构有增长的趋势。采用等温热处理可以将Mg97Zn1Y2合金中的枝晶组织转变为球状晶,当合金保温温度范围从540℃~600℃时,组织尺寸由大-小-大的顺序变化,即经过了粗化、分离及球化至最后粗化三个过程。在等温热处理温度为575℃的组织大致演变趋势为:枝晶态-不规则球形+块状-球形状,当保温时间15min,其组织为均匀、圆整的球状晶。  相似文献   
22.
The long afterglow nanomaterials of strontium aluminate co-doped by Eu and Dy have been synthesized by co-precipitation combined hydrothermal method. The effects of hydrothermal time, calcination time, pH value, the amount of aluminum nitrate, activator, co-activator and flux H3BO3 on the fluorescence properties of the product were investigated by means of single factor optimization experiment. Then the orthogonal experiment was employed to obtain the optimal synthesis conditions that are as follows: nDy/nEu = 2.5, tc = 2.5?h, nEu/nSr = 0.02, th = 8?h. Subsequently, the optimal synthesis conditions were verified by three repeated experiments, and the obtained products were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and fluorescence spectrometer. The results showed that the synthesized target products all were the mixed crystal phase of SrAl2O4 and Sr4All4O25. The particles presented regular spherical-like with size ~ 100?nm. The dopants Eu and Dy were confirmed existed in the SrAl2O4 powders. The fluorescence and afterglow data of the target products were better than that in the orthogonal experiment scheme. The primary emission spectra band was in the range of 400–600?nm with characteristic peak located at ~ 460?nm corresponding to the transitions of Eu2+ ions from 4f65d→4f7, and the blue light can be observed by naked eyes. The similar fast-decaying and slow-decaying processes were displayed in all the afterglow curves, and the initial afterglow brightness of the target product is apparently higher than that of products synthesized by the orthogonal experiment. The synthesized target products, which show excellent long afterglow performance, present a great application prospects in the aspects of ceramics, plastics, arts and crafts, ink and coating.  相似文献   
23.
韩晓育 《水电能源科学》2018,36(10):101-104
针对地震发生后亟需对土石坝群体震害进行快速评估的问题,基于统计数据和MSA方法,提出了土石坝群体震害易损性分析方法。通过分析土石坝群体震害数据,对震损大坝进行等级划分,结合地震破坏损失比和破坏比建立土石坝地震易损性矩阵。并引入MSA方法,建立土石坝群体震害易损性评估模型,计算出四种烈度下易损性参数及易损性曲线和概率,为土石坝群体震害快速评估提供了依据。  相似文献   
24.
In this paper,CeO_2 with a pore size of 2-4 nm was synthesized by hydrothermal method.The CeO_2 modified graphene-supported Pt catalyst was prepared by the microwave-assisted ethylene glycol reduction chloroplatinic acid method,and the effect of the addition of CeO_2 prepared by different hydrothermal reaction time on the catalytic performance of Pt-based catalysts was investigated.The microstructures of CeO_2 and catalysts were characterized by X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),specific surface area and pore size analyzer(BET),scanning electron microscopy(SEM) and electron spectroscopy(EDAX),transmission electron microscopy(TEM),and the catalysts electrochemical performance was tested by electrochemical workstation.The results show that the catalytic performance of the four catalysts with CeO_2 is better than that of the catalyst without CeO_2.Adding CeO_2 with a specific surface area of 120.15 m~2/g prepared by hydrothermal reaction time of 39 h to Pt/C synthesis catalyst,its electrocatalytic performance,stability and resistance to poisoning are the best.The electrochemical active surface area is 102.83 m~2/g,the peak current density of ethanol oxidation is 757.17 A/g and steady-state current density of 1100 s is 108.17 A/g which shows the lowest activation energy for ethanol oxidation reaction.When the cyclic voltammogram is scanned for 500 cycles,the oxidation peak current density retention rate is 87.74%.  相似文献   
25.
26.
The Eu(III) nitrate complex of the meso- N,N′-bis(2-pyridylmethylene)-1,2-(R,S)-cyclohexanediamine ligand was synthesized and characterized by single crystal and powder X-ray diffraction. The crystal lattice of the complex is capable of absorbing and desorbing selectively acetonitrile molecules, at 293 K upon an acetonitrile vapor pressure of ∼0.1 × 105 Pa. This process, which is partially reversible, can be easily followed by both powder X-ray diffraction (P-XRD) and Eu(III) luminescence spectroscopy. The acetonitrile molecule, located in the outer coordination sphere of the metal ion, does not affect the radiative transition probability of 5D0 level of Eu(III) and also it does not activate further non-radiative channels from this level. On the other hand, this molecule is capable of affecting the energy position and intensities of the crystal field components of the 5D07F2 transition. The complex in solid form can be considered a promising material for the optical sensing of acetonitrile vapors.  相似文献   
27.
As indispensable strategic materials for high-tech industries, rare earth elements and yttrium (REY) have become particularly important in recent years, raising the demand of developing new approaches for reclamation of REY from REY-rich materials such as coal combustion products (CCPs). In this study, five coal-fired power plants (CFPPs) in Guizhou of southwest China were selected for investigating REY concentrations of solid samples, atmospheric emissions, and recovery potentials. REY concentrations of feed fuels are higher in this study (147.2–468.6 mg/kg) than what have been reported previously for coals in China and the world. REY atmospheric emissions are extremely low (38.70–180.11 mg REY/t coal). REY are enriched in bottom ash and fly ash, with average of 658 ± 296 mg/kg and maximum of 1257 mg/kg from the five CFPPs. Relative enrichment factors (REF) of REY in bottom ash and fly ash compared with the feed fuel are 0.86–1.02 and 0.91–1.04, respectively. REY concentrations in desulfurized gypsum are very low (6–17 mg/kg), and that is mostly inherited from limestone. Critical REY (Nd, Eu, Tb, Dy, Y, and Er) in bottom/fly ash account for 34%–39% of the total REY and the outlook coefficients (Coutl) are in the range of 0.89–1.11. This study indicates a promising prospect to reclaim REY from REY-rich CCPs (bottom and fly ash) in CFPPs in Guizhou, especially in the central-north Guizhou, although such practices require further technology advancement.  相似文献   
28.
Fe~(3+)and Zn~(2+)ions were doped into the lattice of CeO_2 via the hydrothermal method.The micro structure and spectra features were analyzed systemically.XRD results show that the solid solubility of Fe~(3+)and Zn~(2+)ions in Ce_(1-x)(Fe_(0.5)Zn_(0.5))_xO_2 can be identified as x=0.16.The cell volumes are decreased by increasing the doped content.The TEM graphs prove that the grain size of the sample is about 10 nm,and the EDS result indicates that the doped contents are in accordance with that of the theory concentrations.Meanwhile,the doping also causes the increasing concentrations of the defects and oxygen vacancies which are supported by the XPS,Raman,UV and PL characterizations.The samples exhibit better catalytic activities for improving the hydrogen storage properties and the electrochemical kinetics of the ball milled Mg_2Ni based composites.Further,the catalysis effects are improved by increasing the doped contents,which can be ascribed to the increasing contents of the oxygen vacancies,defects,the special electron transition states and the nature of the doped ions in CeO_2-based solid solutions.  相似文献   
29.
The generation of ammonia, hydrogen production, and nitrogen purification are considered as energy intensive processes accompanied with large amounts of CO2 emission. An electrochemical method assisted by photoenergy is widely utilized for the chemical energy conversion. In this work, earth‐abundant iron pyrite (FeS2) nanocrystals grown on carbon fiber paper (FeS2/CFP) are found to be an electrochemical and photoactive catalyst for nitrogen reduction reaction under ambient temperature and pressure. The electrochemical results reveal that FeS2/CFP achieves a high Faradaic efficiency (FE) of ≈14.14% and NH3 yield rate of ≈0.096 µg min?1 at ?0.6 V versus RHE electrode in 0.25 m LiClO4. During the electrochemical catalytic reaction, the crystal structure of FeS2/CFP remains in the cubic pyrite phase, as analyzed by in situ X‐ray diffraction measurements. With near‐infrared laser irradiation (808 nm), the NH3 yield rate of the FeS2/CFP catalyst can be slightly improved to 0.1 µg min?1 with high FE of 14.57%. Furthermore, density functional theory calculations demonstrate that the N2 molecule has strong chemical adsorption energy on the iron atom of FeS2. Overall, iron pyrite‐based materials have proven to be a potential electrocatalyst with photoactive behavior for ammonia production in practical applications.  相似文献   
30.
The Y3(AI,Ga)_5O_(12):Ce~(3+),Cr~(3+),Nd~(3+)(YAGG) nano-phosphors with homogeneous particle-size distribution,low aggregation and average crystalline size of about 65 nm were obtained using a modified Pechini method.Only slight aggregation of the crystallites occurs after post-annealing at 1100℃.The intense Ce~(3+)bands in the excitation spectra of the Ce~(3+),Cr~(3+),Nd~(3+)co-doped materials monitoring the Cr~(3+) emission at 690 nm indicate energy transfer from Ce~(3+) to Cr~(3+).Weak Nd~(3+) lines are observed,as well.In addition,the emission of Nd~(3+)at 1060 nm with excitation of Ce~(3+) and Cr~(3+) confirms the Ce~(3+)/Cr~(3+)to Nd~(3+)energy transfer.The short average luminescence decay times for the Ce~(3+) emission indicate the Ce~(3+)/Cr~(3+)to Nd~(3+)energy transfer.Eventually,the Y_3(AI,Ga)_5O_(12):Ce~(3+),Cr~(3+),Nd~(3+) nano-phosphors exhibit persistent luminescence originating from the 4f~3→4f~3 transitions of Nd~(3+) which matches well to the first biological window to be used in bioimaging applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号